

IRIDOID AND PHENOLIC GLUCOSIDE FROM *VITEX ROTUNDIFOLIA*

ISAO KOUNO, MASAAKI INOUE, YOSHIKO ONIZUKA, TAMAYO FUJISAKI and NOBUSUKE KAWANO*

Faculty of Pharmaceutical Sciences, Nagasaki University, Bunkyo-machi 1-14, Nagasaki 852, Japan

(Revised received 25 May 1987)

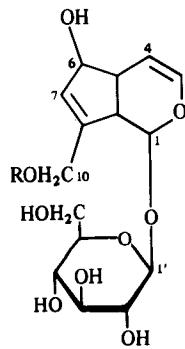
Key Word Index—*Vitex rotundifolia*; Verbenaceae; iridoid glucoside; agnuside; eurostoside; phenylbutanone glucoside.

Abstract—The phenylbutanone glucoside, as well as the known compounds agnuside and eurostoside, were isolated from the leaves of *Vitex rotundifolia*, although eurostoside was obtained as a *trans*- and *cis*-mixture. The structures were established on the basis of spectroscopic data.

INTRODUCTION

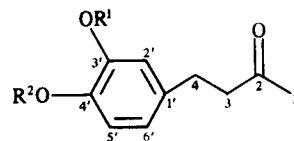
Vitex rotundifolia L.f. is widely distributed on the sea coast in Asia. The presence of the iridoid glucoside, agnuside [1], and the diterpene, rotundifuran [2] have been recorded. This report deals with a new constituent of *V. rotundifolia*.

RESULTS AND DISCUSSION


From the methanol extract of the leaves of *V. rotundifolia*, two iridoid glucosides **1** and **2** and a phenol glucoside **3** were isolated.

The ^1H and ^{13}C NMR spectra of compound **1** were identical with those of agnuside [3, 4], which was isolated as a major component from this plant [1].

Compound **2** analysed for $\text{C}_{24}\text{H}_{28}\text{O}_{11}$ [FABMS, m/z 515 $[\text{M} + \text{H}]^+$]. The ^1H NMR spectrum of compound **2** is very similar to that of agnuside except for the signals of the aromatic and olefinic protons. Although these low field signals are too complex to clarify, two sets of para-substituted cinnamoyl moieties were elucidated by the proton-proton decoupling experimental, i.e. the trans-olefin system ($J = 16.1$ Hz) at δ 6.36 and 7.65 (each doublet), and the *cis*-olefin system ($J = 12.6$ Hz) at 5.81 and 6.90 (each doublet) were found, along with the *para*-substituted benzene ring protons (7.46, 6.80, each d , $J = 8.7$ Hz, 1H; 7.63, 6.75, each d , $J = 8.9$ Hz, 1H). As the compound **2** gave a hexa-acetate (**2a**) (EIMS, m/z 744 $[\text{M}]^+$), these findings indicated **2** has a *p*-hydroxycinnamoyl moiety instead of the *p*-hydroxybenzoyl found in agnuside (**1**). The position of the cinnamoyl moiety was established as C-10, as the signals of the glucose moiety in the ^{13}C NMR spectrum and the signals of H-6 (δ 4.45) and H-10 (δ 4.70) in the ^1H NMR spectrum of **2** were similar to those of agnuside (**1**) [3, 4]. It was concluded that **2** is a 1:1 mixture of 10-*O*-*trans*- and *cis*-*p*-hydroxycinnamoyl aucubin. Compound **2** was separated into *cis*- and *trans*-compounds by HPLC, but it was still a mixture after


leaving it at room temperature. The *trans*-compound **2** is known from *Euphrasia rostkoviana* [5], *Penstemon whippleanus* [6], and *Vitex agnus-castus* [7], and named eurostoside.

Compound **3** analysed for $\text{C}_{16}\text{H}_{22}\text{O}_8$ (FABMS, m/z 365 $[\text{M} + \text{Na}]^+$). The keto group was suggested by an IR absorption at 1700 cm^{-1} , and a methyl ketone signal at δ 2.11 in the ^1H NMR spectrum. Moreover, the ^1H NMR spectrum of **3** showed four equivalent protons at δ 2.74 (*br s*, 4H) and the trisubstituted benzene ring protons at 6.60 (*dd*, $J = 10.6$ and 2.2 Hz, 1H), 6.69 (*d*, $J = 2.2$ Hz, 1H) and 7.07 (*d*, $J = 10.6$ Hz, 1H). The ^{13}C NMR of **3** indicated the

1 $\text{R} = p$ -hydroxybenzoyl

2 $\text{R} =$ *trans* and *cis* *p*-hydroxycinnamoyl

3 $\text{R}^1 = \text{H}$, $\text{R}^2 = \text{Glu}$

3a $\text{R}^1 = \text{Ac}$, $\text{R}^2 = \text{Glu(OAc)}_4$

4 $\text{R}^1 = \text{Glu}$, $\text{R}^2 = \text{H}$

*Author to whom correspondence should be addressed.

Table 1. ^{13}C NMR data of myzodendrone* and compound 3 (22.5 MHz)

Position <i>n</i> -chain	Myzodendrone	3
C-1	30.2 <i>q</i>	30.0 <i>q</i>
C-2	165.6 <i>s</i> †	211.4 <i>s</i>
C-3	45.9 <i>t</i>	45.6 <i>t</i>
C-4	30.2 <i>t</i>	30.0 <i>t</i>
Benzene ring		
C-1'	124.5 <i>s</i>	138.3 <i>s</i>
C-2'	117.0 <i>d</i>	117.0 <i>d</i>
C-3'	134.2 <i>s</i>	144.8 <i>s</i>
C-4'	146.5 <i>s</i>	148.2 <i>s</i>
C-5'	118.9 <i>d</i>	119.3 <i>d</i>
C-6'	119.0 <i>d</i>	120.7 <i>d</i>
Glucose		
C-1''	104.3 <i>d</i>	104.5 <i>d</i>
C-2''	74.9 <i>d</i>	74.7 <i>d</i>
C-3''	77.6 <i>d</i>	77.5 <i>d</i>
C-4''	71.4 <i>d</i>	71.1 <i>d</i>
C-5''	78.3 <i>d</i>	78.0 <i>d</i>
C-6''	62.5 <i>t</i>	62.4 <i>t</i>

All values are in (ppm) relative to TMS (CD_3OD).

*Data obtained from ref. [8].

†This assignment is thought to be incorrect.

presence of a benzene ring, two methylene carbons and a sugar group which was confirmed as glucose by chromatographic comparison of the hydrolysis product of 3 with an authentic sample. Compound 3 gave a penta-acetate (3a) upon usual acetylation. All these findings indicated 3 is 3',4'-dihydroxyphenylbutanone glucoside in comparison with myzodendrone (4) [4-(3',4'-dihydroxyphenyl)-butan-2-one-3'-*O*-glucoside] which was isolated from *Myzodendron punctulatum* [8].

The position of glucose was established as 4' by the NOE enhancement (10%) of the signal at δ 7.07 (H-5') of the aromatic proton upon irradiation at δ 4.68 (anomeric proton, H-1'') frequency. The β -configuration of C-1'' (anomeric carbon) was deduced by the signals of glucose in the ^{13}C NMR spectrum of 3 and the *J* value (*J* = 7.5 Hz) at δ 4.68 of the anomeric proton signal in the ^1H NMR spectrum of 3. Thus, it was concluded that compound 3 is 4-(3',4'-dihydroxyphenyl)-butan-2-one-4'-*O*- β -D-glucoside.

EXPERIMENTAL

^1H and ^{13}C NMR spectra were recorded in CD_3OD solns unless otherwise specified and 90.0/22.5 MHz ($^1\text{H}/^{13}\text{C}$) using TMS as int. standard.

Extraction and isolation. The dried leaves of *V. rotundifolia* were collected on the sea coast in Nagasaki, Japan, and extracted

with MeOH. The MeOH extracts (362 g) were dissolved in H_2O , and partitioned between *n*-hexane and H_2O , then *n*-BuOH and H_2O , successively. The *n*-BuOH soluble portion was extracted with EtOAc-MeOH (7:3) to give the soluble part (42.3 g). This was chromatographed on silica gel using the solvent system of $\text{CHCl}_3\text{-MeOH-H}_2\text{O}$ (8:2:0.1), then purified by reversed phase chromatography [solvent system MeOH- H_2O (6:4)] to give the compounds 1 (23 g), 2 (345 mg) and 3 (290 mg), respectively. The ^1H and ^{13}C NMR spectra of 1 were identical with those of agnuside.

Compound 2. Amorphous powder, $[\alpha]_D^{16} -49.6^\circ$ (EtOH; *c* 0.9); FABMS *m/z* 515 [$\text{M} + \text{Na}$]⁺; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3550, 1700 and 1610; ^1H NMR: δ 5.00 (*d*, *J* = 7.4 Hz, 1H, H-1), 6.39 (*dd*, *J* = 2.0, 6.3 Hz, 1H, H-3), 5.11 (*dd*, *J* = 3.8, 6.3 Hz, 1H, H-4), 2.70 (*m*, 1H, H-5), 4.45 (*m*, 1H, H-6), 5.80 (*br s*, 1H, H-7), 2.96 (*br t*, *J* = 7.4 Hz, 1H, H-9), 4.70 (*d*, *J* = 7.1 Hz, 2H, H-10), 4.69 (*d*, *J* = 7.1 Hz, 1H, H-1'), *p*-hydroxy cinnamoyl moiety; H-*trans* 6.36 (*d*, *J* = 16.1 Hz, 1H), 7.65 (*d*, *J* = 16.1 Hz, 1H), 7.46 (*d*, *J* = 8.7 Hz, 2H), 6.80 (*d*, *J* = 8.7 Hz, 2H); H-*cis* 5.81 (*d*, *J* = 12.6 Hz, 1H), 6.90 (*d*, *J* = 12.6 Hz, 1H), 7.63 (*d*, *J* = 8.9 Hz, 2H), 6.75 (*d*, *J* = 8.9 Hz, 2H); ^{13}C NMR: glucose moiety δ 100.3 (*d*, C-1'), 74.9 (*d*, C-2'), 78.2 (*d*, C-3'), 71.5 (*d*, C-4'), 78.0 (*d*, C-5') and 62.8 (*t*, C-6').

Compound 3. Amorphous powder. (Found: C, 52.41; H, 6.54. $\text{C}_{16}\text{H}_{22}\text{O}_8\text{-3/2H}_2\text{O}$ requires: C, 52.03; H, 6.83%). $[\alpha]_D^{16} -39.6^\circ$ (MeOH; *c* 0.4); FABMS *m/z* 365 [$\text{M} + \text{Na}$]⁺; IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3500-3100, 1702, 1600 and 1510; ^1H NMR: δ 2.11 (*s*, 3H, H-1), 2.74 (*br s*, 4H, H-3 and 4), 3.35-3.90 (*m*, 6H, sugar protons), 4.68 (*d*, *J* = 7.5 Hz, 1H, anomeric proton H-1''), 6.60 (*dd*, *J* = 10.6 and 2.2 Hz, 1H, H-6'), 6.99 (*d*, *J* = 2.2 Hz, 1H, H-2'), 7.07 (*d*, *J* = 10.6 Hz, 1H, H-5').

Acetate of compound 3. Prepared with Ac_2O -pyridine; 3a colourless oil, $[\alpha]_D^{16} -11.2^\circ$ (CHCl_3 ; *c* 0.3); EIMS *m/z* 552 [M^+]; IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1745, 1713, 1600 and 1509; ^1H NMR (CDCl_3): δ 2.03, 2.04, 2.07 and 2.08 (each *s*, 3H, acetyl signals), 2.12 (*s*, 3H, H-1), 2.25 (*s*, 3H, 3'-OAc), 2.79 (*m*, 4H, H-3 and 4), 3.96 (*d*, *J* = 7.1 Hz, 1H, H-1''), 4.22 (*m*, 2H, H-6''), 5.00-5.34 (*m*, 4H, sugar protons), 6.87-6.96 (*m*, 3H, H-2', 5' and 6').

Acid hydrolysis of compound 3. Compound 3 (30 mg) was refluxed with 0.1 N HCl (15 ml) for 30 min, the mixture was neutralized with $\text{Ba}(\text{OH})_2$ and filtered. The filtrate was evapd and the residue was examined by Avicel TLC in comparison with the authentic sample of glucose.

REFERENCES

1. Haensel, R., Leuckert, C., Rimpler, M. and Schaaf, K. D. (1965) *Phytochemistry* **4**, 19.
2. Asaka, Y., Kamikawa, T. and Kubota, T. (1973) *Chemistry Letters* **9**, 937.
3. Dutta, P. K., Chowdhury, U. S., Chakravarty, A. K., Achari, B. and Pakrashi, S. C. (1983) *Tetrahedron* **39**, 3067.
4. Chaudhuri, R. K., Afifi-Yazar, F. Ü. and Sticher, O. (1980) *Tetrahedron* **36**, 2317.
5. Salama, O. and Sticher, O. (1983) *Planta Med.* **47**, 90.
6. Junior, P. (1984) *Planta Med.* **48**, 444.
7. Görler, K., Oehlke, D. and Soicke, H. (1985) *Planta Med.* **49**, 530.
8. Reyes, A., Muñoz, M., Garcia, H. and Cox, C. (1986) *J. Nat. Prod.* **49**, 318.